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Abstract
An amplitude-phase formula for the S-matrix due to a central potential is
derived. The derivation makes use of invariants of the Ermakov–Lewis type.

PACS numbers: 02.30.Hq, 02.30.Ik, 03.65.Ca, 03.65.Sq

Important equations of the amplitude-phase method [1] can be interpreted as a so-called
Ermakov system [2–4]. Ermakov systems of various complexities have been studied because
of their invariants [2, 5–10]. In the amplitude-phase analysis, such invariants are expressed in
terms of two functions that are solutions to either the Schrödinger equation or the nonlinear
Milne equation [10]. Invariants of the Ermakov–Lewis type therefore appear in the matching of
different particular amplitude-phase solutions of the Schrödinger equation. Physical quantities
derived by the amplitude-phase method may also be expressed in terms of these invariants.

In this letter, it is shown how a useful amplitude-phase formula for the S-matrix can be
derived from invariants of an Ermakov system defined by the radial Schrödinger equation
and the Milne equation. For this particular Ermakov system, it has been shown that
several invariants containing first-order, second-order and fourth-order derivatives derive from
Wronskian relations of the Schrödinger equation [10] (see also [11]).

Consider the radial Schrödinger equation for a quantal particle of mass m and energy E
in a scattering potential V (r), i.e.

d2��(r)

dr2
+

[
2m

h̄2 (E − V (r)) − �(� + 1)

r2

]
��(r) = 0, (1)

where � is the partial-wave quantum number and V (+∞) = 0. The scattering solution is
regular at the origin, i.e.

��(0) = 0, (2)

and as r → +∞ it satisfies

��(r) ∼ N�(e
−i[κ(r)−π�/2] − S� ei[κ(r)−π�/2]), r → +∞, (3)
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where N� is a normalization factor and κ(r) satisfies the relation

dκ(r)

dr
→ k, r → +∞, (4)

with

k =
√

2mE

h̄2 . (5)

A pair of amplitude-phase solutions of the Schrödinger equation is given by

F±(r0, r) = u�(r) e±iφ(r0,r), (6a)

φ(r0, r) =
∫ r

r0

dr ′

u2
�(r

′)
, (6b)

where r0 is an unspecified reference point and u� satisfies the nonlinear Milne equation

d2u�

dr2
+

[
2m

h̄2 (E − V (r)) − �(� + 1)

r2

]
u� = u−3

� . (7)

The Milne equation results from inserting the ansatz (6a) into the radial Schrödinger
equation (1) and applying the relation (6b). The Wronskian determinant of the two solutions
(6a) is constant.

The relevant scattering solution of (7) is constant in the limit as r → +∞. It is specified
by the boundary condition:

u�(+∞) = k−1/2. (8)

With the aid of (1), (6a), (6b) and (7), one derives the Ermakov–Lewis invariants that
contain first-order derivatives with respect to r; see [10]:

�−(�) =
[
� ′

�(r)u�(r) − ��(r)u
′
�(r) − i

��(r)

u�(r)

]
eiφ(r0,r), (9a)

�+(�) =
[
� ′

�(r)u�(r) − ��(r)u
′
�(r) + i

��(r)

u�(r)

]
e−iφ(r0,r). (9b)

It is straightforward to verify that d�±(�)/dr = 0. In particular, the regular solution and the
scattering Milne solution satisfy (9a) and (9b). The determination of the invariants, �±(�),
requires an integration of Milne’s solution from +∞ to any matching point in common with
the regular, radial Schrödinger solution that is integrated from the origin.

It is possible to determine the values of these invariants from the boundary conditions at
+∞, i.e. from equations (3) and (8), which gives

�−(�) = −2ik1/2N� ei�(�), (10a)

�+(�) = −2ik1/2N�S� e−i�(�), (10b)

where

�(�) = lim
r→+∞ [φ(r0, r) − κ(r) + π�/2] . (11)

From (10a) and (10b) one obtains

S� = �+(�)

�−(�)
e2i�(�). (12)

In applications of (12), it is convenient to let the phase reference point r0 be identical to the
(unspecified) point r at which the invariants �±(�) in (9a) and (9b) are calculated. Then the
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phase φ(r0, r) in (11) can be obtained numerically together with the integration of the Milne
equation (7) from the asymptotic boundary condition (8) to the matching point (= r0).

Formula (12) is valid for complex potentials and complex angular momenta that do not
alter the given boundary conditions (3) and (8).

In this letter, it is demonstrated how the amplitude-phase method can benefit from
invariants of Ermakov systems. The invariants �±(�) become important ingredients in the
derivation of the S-matrix formula. The invariants are also important ingredients in the
final S-matrix formula. Since these types of invariants are possible to generalize to coupled
Schrödinger and the related coupled Milne equations, the present formulation is a first step to
generalize the amplitude-phase method to coupled scattering states [12].

In numerical applications, one has the freedom to choose the matching point conveniently
on the real axis or in the complex r-plane. For effective potentials with barriers it may
be numerically advantageous to use additional Milne solutions in regions where the present
‘scattering Milne solution’ becomes large and oscillatory. In such cases, the S-matrix formula
has to be re-expressed to include the additional Milne solutions.
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